Features

Designed for the manufacturing environment, Elwood offers a full line of Pump Unloading equipment specifically designed to meet customer’s specifications. Standard Elwood components and proven design concepts packaged into a single assembly, built on 30 years of experience, ensure a reliable long-lasting easy-to-maintain systems.

FUNCTION

The Unloading Valve system is designed to maximize efficiencies of the high-pressure hydraulic pumps, while reducing the overall energy requirements for the hydraulic system. In the event of a power failure, either pneumatic or electrical, the control valve automatically shifts to the open position, allowing fluid to flow back to the tank. The Breakdown Orifice assembly uses a cartridge design sized and positioned to eliminate cavitation, fluid vapor pressure, vibration and minimize noise. The basic Unloading Valve System consists of: Manifold-mounted Stop Valve, Manifold-mounted Check Valve, Pneumatic/hydraulic-operated Pilot Valve, Din cartridge-style two-way Control Valve, and a replaceable cartridge-style Breakdown Orifice assembly. In a typical system when pump capacity exceeds system demands, the Unloading Valve is opened, and when system demand exceeds pump capacity, the Unloading Valve is closed, supplying high-pressure hydraulic fluid to the system. When the Unloading Valve is open, hydraulic fluid is directed through the two-way control valve and Breakdown Orifice assembly back to the tank. The Breakdown Orifice creates a pre-determined load on the high-pressure pump, providing a significant savings in energy requirements per pump, when the unloading valve is in the bypass position. In a single or multi-pump system, the Stop Valve provides a means for isolating the hydraulic pump unit including, Check Valve, Unloading Valve, and Breakdown Orifice assembly from the hydraulic system to allow for servicing. The Check Valve eliminates the potential back flow of hydraulic fluid from the main hydraulic system whenever the system pressure is greater than the hydraulic pressure at the pump. In a multi-pump system, the Check Valve isolates the individual high-pressure hydraulic pumps that are out of service or off line, from the main hydraulic system. In a system that is designed with a single hydraulic pump that incorporates an accumulator, the Check Valve isolates the accumulator from the hydraulic pump, preventing back flow between accumulator to hydraulic pump. The Control Valve directs fluid flow to either hydraulic system or to Breakdown Orifice back to tank.

FEATURES

- Capacities to 1200 GPM (455 LPM) with 3600 PSI (250 Bar) working pressure
- Designed to operate with low viscosity fluids and raw water
- Two-way valve features a removable Din-style Stainless Steel Cartridge design for easy serviceability, excellent corrosion-resistance, reliability, and long-lasting performance
- Removable Stainless Steel Cartridge style Breakdown Orifice Assembly. Designed in accordance with customer pump specification to ensure proper load control when system is in the bypass mode.
- Reversible Soft Composition Disc
- V-Notch Shock Technology with Velocity Control Ports
- Eliminates Cavitation with Multi-stage Orifice Design
- Capable of passing large particles without clogging
- Low noise level
- Poppet position indicator available for electrical interlock ensuring valve position

V-NOTCH SHOCK TECHNOLOGY

Uses specially-designed orifices machined into outer sleeve and precision contours on the poppet assembly to control flow and reduce hydraulic shock in the system.

As the valve is opened, fluid flows past the disc and is discharged through the special V-Notch orifices machined into the annular area of the sleeve located above the sealing area of the disc. (1) As the valve closes, the poppet reduces the V-Notch area, rapidly at first, (2) then at a decreasing rate for each increment of poppet movement, until, (3) at the very peak of the V-Notch, flow is stopped before the disc is seated. The fluid is brought to rest gradually, eliminating harmful shock or water hammering.

A. Reversible Composition Disc

The soft composition disc is designed to provide reliable maintenance-free drop tight sealing around scratches or scored surfaces between the disc and seat. Damaged discs are easily reversed to provide extended seal life, reducing long term maintenance costs.

B. Inverse Flow Technology

Inverse flow concept uses the direction of fluid flow through that valve in conjunction with the operating direction of the poppet assembly. The flow of the fluid through the valve is directly opposing the movement of the poppet as it closes. This prevents the poppet from slamming into the valve seat as the poppet approaches the fully-closed position. If fluid flow is in the same direction as the poppet movement, a large imbalance is created, causing the poppet to slam into the valve seat.
Technical Data

| HYDRAULIC Minimum Operating Pressure | 400 PSI (28 bar)
| (Consult Factory for pressures below 400 PSI) |
| Hydraulic Media | HWCF, 97/3 Soluble Oil in Water, Synthetics, Mineral Oils and Kerosene |
| Viscosity Range at 100°F (38°C) | 20 SSU (1.2 Cst.) to 1800 SSU (385 Cst.) |
| Maximum Operating Pressure Rating | 3600 PSI (248 bar)
| 6000 PSI (414 bar) |
| Fluid Temperature Range | HWFC 35° to 150° F (2° to 65° C)
| Mineral Oil 5° to 150° F (-15° to 65° C) |
| Recommended Filtration | Minimum - 149 Micron (100 mesh) |

Valve Sizing

Valve sizing and selection requires consideration in two (2) areas: Pipe Velocity and Pressure Drop through the valve.

PIPE VELOCITY

Allowable maximum pipe velocity is based on various system considerations and fluid velocity, and resulting pressure drop. Generally, the following flow rates are acceptable parameters for most piping systems:

- for short-to-medium length runs, 26 ft/sec (8 m/sec), and a maximum of 30 ft/sec (9 m/sec)
- for long piping runs, 20 ft/sec (6 m/sec)

PRESSURE DROP THROUGH THE VALVE

For peak performance and extended valve life pressure drop through the valve should be a consideration. Use the manufacturer's stated Cv Factor as an effective method in calculating a valve's pressure drop.

1. \[\Delta P = \left(\frac{GPM}{Cv} \right)^2 \]
2. \[Cv = \sqrt{\frac{GPM^2}{\Delta P}} \]
3. \[GPM = Cv \sqrt{\Delta P} \]

\(\Delta P \) = Pressure drop (PSI)
GPM = Flow (GPM)
Cv = Cv factor
Pump By-Pass Valve System Configuration

Systems with Variable Flow Rates (Centrifugal Pumps)

System 1A
Single Pump with Breakdown Orifice

System 1B
Multiple Pumps with Breakdown Orifice

Systems with Continuous Flow Rates (Positive Displacement Pumps)

System 2A
Single Pump

System 2B
Multiple Pumps
Flow and Capacity Curves

MODELS:
- DIN 25
- DIN 32

FLOW RATES:
② - 20 ft/sec (6.1 m/sec)
③ - 30 ft/sec (9.1 m/sec)
④ - 40 ft/sec (12.2 m/sec)

FLOW RATES:
② - 20 ft/sec (6.1 m/sec)
③ - 30 ft/sec (9.1 m/sec)
④ - 40 ft/sec (12.2 m/sec)
Dimensional Data

Dimensional Data - Pump Unloading System

<table>
<thead>
<tr>
<th>SIZE</th>
<th>CV FACTOR</th>
<th>PORT A</th>
<th>PORT B</th>
<th>PORT C</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type</td>
<td>Size</td>
<td>Type</td>
<td>Size</td>
</tr>
<tr>
<td>DIN 25</td>
<td>6.9</td>
<td>SAE</td>
<td>1 1/4"</td>
<td>SAE</td>
<td>1 1/4"</td>
</tr>
<tr>
<td>DIN 32</td>
<td>9.8</td>
<td>SAE</td>
<td>2"</td>
<td>SAE</td>
<td>2"</td>
</tr>
<tr>
<td>DIN 40</td>
<td>16.74</td>
<td>SAE</td>
<td>2 1/2"</td>
<td>SAE</td>
<td>2 1/2"</td>
</tr>
<tr>
<td>DIN 50</td>
<td>30.6</td>
<td>SAE</td>
<td>3"</td>
<td>SAE</td>
<td>3"</td>
</tr>
<tr>
<td>DIN 63</td>
<td>43.3</td>
<td>SAE</td>
<td>3"</td>
<td>SAE</td>
<td>3"</td>
</tr>
</tbody>
</table>

Dimensions - Cont.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 25</td>
<td>3.00</td>
<td>5.00</td>
<td>10.00</td>
<td>3.50</td>
<td>5.25</td>
<td>17.50</td>
<td>18.00</td>
<td>33.50</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>127</td>
<td>254</td>
<td>89</td>
<td>133</td>
<td>444</td>
<td>457</td>
<td>850</td>
<td>176</td>
</tr>
<tr>
<td>DIN 32</td>
<td>3.00</td>
<td>4.25</td>
<td>11.00</td>
<td>3.50</td>
<td>6.50</td>
<td>17.50</td>
<td>20.00</td>
<td>36.00</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>108</td>
<td>279</td>
<td>89</td>
<td>165</td>
<td>444</td>
<td>508</td>
<td>914</td>
<td>178</td>
</tr>
<tr>
<td>DIN 40</td>
<td>4.38</td>
<td>7.00</td>
<td>19.25</td>
<td>4.50</td>
<td>7.50</td>
<td>21.50</td>
<td>21.50</td>
<td>42.19</td>
<td>7.88</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>178</td>
<td>489</td>
<td>114</td>
<td>190</td>
<td>546</td>
<td>546</td>
<td>1072</td>
<td>200</td>
</tr>
<tr>
<td>DIN 50</td>
<td>4.00</td>
<td>5.75</td>
<td>10.00</td>
<td>8.50</td>
<td>8.25</td>
<td>30.00</td>
<td>23.00</td>
<td>46.50</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>146</td>
<td>254</td>
<td>216</td>
<td>209</td>
<td>761</td>
<td>584</td>
<td>1180</td>
<td>254</td>
</tr>
<tr>
<td>DIN 63</td>
<td>5.00</td>
<td>7.75</td>
<td>12.00</td>
<td>6.50</td>
<td>8.25</td>
<td>36.00</td>
<td>25.00</td>
<td>54.50</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>197</td>
<td>305</td>
<td>165</td>
<td>209</td>
<td>305</td>
<td>635</td>
<td>1383</td>
<td>305</td>
</tr>
</tbody>
</table>

Consult Factory for additional configurations or flange sizes.
Above dimensions are for reference only.
All dimensions are subject to change.

= Inches; = Millimeters
Ordering Data – Pump Unloading System

PRESSURE RATING
- 3K: 3000 PSI (248 Bar)
- 6K: 6000 PSI (414 Bar)

VALVE SIZE

<table>
<thead>
<tr>
<th>Size</th>
<th>Cv</th>
<th>Connection Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 25</td>
<td>6.9</td>
<td>1 1/4"</td>
</tr>
<tr>
<td>DN 32</td>
<td>9.8</td>
<td>2"</td>
</tr>
<tr>
<td>DN 40</td>
<td>16.7</td>
<td>2 1/2"</td>
</tr>
<tr>
<td>DN 50</td>
<td>30.6</td>
<td>3"</td>
</tr>
<tr>
<td>DN 63</td>
<td>43.3</td>
<td>3"</td>
</tr>
</tbody>
</table>

PRESSURE RATING
- 3K: 3000 PSI (248 Bar)
- 6K: 6000 PSI (414 Bar)

PRESSURE RATING
- 3K: 3000 PSI (248 Bar)
- 6K: 6000 PSI (414 Bar)

FLANGE TYPE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 61</td>
<td>SAE 4-Bolt Flange Pattern</td>
</tr>
<tr>
<td>SAE 62</td>
<td>SAE 4-Bolt Flange Pattern</td>
</tr>
<tr>
<td>SR 15</td>
<td>1500# ASA Flange</td>
</tr>
<tr>
<td>SR 25</td>
<td>2500# ASA Flange</td>
</tr>
</tbody>
</table>

ELECTRICAL SOLENOID

<table>
<thead>
<tr>
<th>Code</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24V D.C.</td>
</tr>
<tr>
<td>6</td>
<td>110/120V 50/60Hz A.C.</td>
</tr>
<tr>
<td>8</td>
<td>220/240V 50/60Hz A.C.</td>
</tr>
</tbody>
</table>

ELECTRICAL CONNECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11B</td>
<td>Electrical Quick Disconnects</td>
</tr>
<tr>
<td></td>
<td>Industrial Form B (11mm)</td>
</tr>
<tr>
<td>11D</td>
<td>Electrical Quick Disconnects</td>
</tr>
<tr>
<td></td>
<td>(DIN 43650)</td>
</tr>
</tbody>
</table>

FUNCTION

- 21: 2-Way Valve (Normally Open)

ADDITIONAL REQUIRED VALVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Check Valve</td>
</tr>
<tr>
<td>S</td>
<td>Shut-Off Valve</td>
</tr>
<tr>
<td>B</td>
<td>Breakdown Orifice Pack</td>
</tr>
<tr>
<td>R</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>O</td>
<td>Item Not Required</td>
</tr>
</tbody>
</table>

Code No. Example:

PBU - 3K - DN 50 - 3" / SAE62 - 21 / 3 / 11B - C - S - B - R

- Denotes Standard Features.
- Enter "0" If Not Required

Refer to Elwood Options Brochure (number 2221) for available valve options.
Packed Spool Directional Control Valves

- Directional Valve for a range of applications
- Up to 46 GPM (32 GPM nominal)
- 3000 PSI (207 bar) and 6000 PSI (414 bar)

- Air Solenoid Operated
- 3-position spring centered
- 2-position spring offset
- 2-position momentary contact

Proportional Pressure Control System

Controlled Pressure Ranges:
- 390 PSI (27 bar) to 1500 PSI (103 bar)
- 480 PSI (33 bar) to 3000 PSI (207 bar)
- 580 PSI (40 bar) to 6000 PSI (414 bar)
- FLOW RATE: To 1000 GPM (3785 LPM)

Poppet Type Directional Control Valves

- Capacities to 1600 GPM (6057 LPM)
- 3000 PSI (207 bar), 4500 PSI (310 bar) and 6000 PSI (414 bar) models are available
- Built-in flow control
- Manifold mounted, socket weld or flanged

Modular ISO-Lock

- Isolates manifold mounted directional control valves
- Reduces maintenance time - replace Directional Valves without depressurizing and draining hydraulic system
- Single lever operation to close all four ports (P, T, A, B). Cylinders can remain under the external load without having to be blocked
- Lockable per OSHA safety standard
- NFPA “DO”/CETOP and special mounting patterns available

Descaling & Pump Unloading Valves

Capacities:
- 3000 PSI (207 bar)
- 6000 PSI (414 bar)
- 6000 GPM (22710 LPM)
- Connection Sizes: 1-1/4" to 10"

Descaling Valves - Spindle – Brochure 2218
DIN – Brochure 2219
Pump Unloading Valves – Brochure 2213

Accumulator Systems

- Descaling
- Mill Systems
- Presses
- Controls
- Level
- Pressure
- Pump Sequencing
- Ballast Charging
- Designed to your specifications

Brochures 105, 380 & 102